Quotient Spaces

P. Sam Johnson

May 19, 2017

P. Sam Johnson (NIT Karnataka)

Quotient Spaces

May 19, 2017 1 / 10

Overview

(日) (四) (三) (三) (三)

Definition 1.

Let W be a subspace of a vector space V over F. By a **coset** of W in V we mean a set of the form

$$v + W := \left\{ v + w : w \in W \right\}$$

for some $v \in V$.

We denote the set of cosets of W in V by V/W.

Example 2.

Let
$$V = \mathbb{R}^2$$
 and $W = \mathbb{R}e_1 = \left\{ (x, 0) : x \in \mathbb{R} \right\}$. Take any $v = (a, b) \in \mathbb{R}^2$.
Then
 $v + W = \left\{ (c, b) : c \in \mathbb{R} \right\}$

is the line through (a, b) parallel to the x-axis. Figure page 48

Example 3.

Let $V = \mathbb{R}^3$ and $W = \{(x, y, 0) : x, y \in \mathbb{R}\}$ be the xy-plane. Then the coset v + W for any $v \in \mathbb{R}^3$ is the plane parallel to the xy-plane through the point v = (a, b, c) at "height" c.

Exercise 4.

Let $W := \{(x, y) \in \mathbb{R}^2 : ax + yb = 0\}$ for a fixed $(a, b) \in \mathbb{R}^2 \setminus (0, 0)$. Show that W is a one-dimensional subspace of $V = \mathbb{R}^2$ and that the cosets of W in V are the lines parallel to the line ax + by = 0 and hence are given by ax + by = c for $c \in \mathbb{R}$.

Lemma 5.

Let W be a subspace of a vector space over F. Let $v_i + W$ be cosets for i = 1, 2. Then exactly one of the following is true :

(a)
$$(v_1 + W) \cap (v_2 + W) = \emptyset$$

(b)
$$v_1 + W = v_2 + W$$
.

Moreover, $v_1 + W = v_2 + W$ if and only if $v_1 - v_2 \in W$.

Definition 6.

Let $\xi \in V/W$ be a coset. If $\xi = v + W$, then v is called a **representative** of ξ . If $\xi = v + W$ as well as $\xi = v + W$, then u - v is an element of W. Any two representatives of a coset of W differ by an element of W. In particular, x + W = W if and only if $x \in W$.

"Addition" of two cosets $\xi_1 := v_i + W$ in V/W

Let v_i be a representative of ξ_i for i = 1, 2. Then we defind $\xi_1 + \xi_2$ to be the coset whose representative is $v_1 + v_2$. That is,

$$\xi_1 + \xi_2 = (v_1 + v_2) + W.$$

We need to show that this coset $\xi_1 + \xi_2$ is defined without any ambiguity. This is usually called "**the well-definedness**" of the concept.

Is "the sum of two cosets" well-defined?

Is the sum depending on representatives choosen on each coset ?

Suppose that there are two representatives v_i and u_i for ξ_1 , i = 1, 2.

Then the sum $\xi_1 + \xi_2$ is the coset $(v_1 + v_2) + W$ and $(u_1 + u_2) + W$.

"Addition" of two cosets $\xi_1 := v_i + W$ in V/W

Claim :

$$(v_1 + v_2) + W = (u_1 + u_2) + W.$$
 (1)

The equation (1) holds iff
$$(v_1 + v_2) + W = (u_1 + u_2) + W$$

iff $(v_1 - u_1) + (v_2 - u_2) \in W$.

But

$$(v_1 - u_1) + (v_2 - u_2) \in W$$

is true, since v_i and u_i are representatives of the same coset and hence

$$u_i - v_i \in W$$
.

Since W is a subspace $(v_1 - u_1) + (v_2 - u_2) \in W$.

Thus to defind the sumof two cosets we may use any two representatives.

P. Sam Johnson (NIT Karnataka)

"Scalar Multiplication" on V/W

If $\alpha \in F$ and $\xi = v + W \in V/W$, then $(\alpha \xi) := \alpha v + W$.

Example 7.

Show that the operation "scalar multiplication" is well-defined.

Dimension of Quotient Space

Theorem 8.

Let W be a subspace of V. Let V/W denote the set of cosets of V with respect to W. The following operations are well-defined :

- (a) $\xi_1 + \xi_2 = (v_1 + v_2) + W$, where $\xi_i := v_i + W \in V/W$.
- (b) $\alpha \xi = (\alpha v) + W$, where $\xi = v + W \in V/W$.

V/W is called the quotient space of V with respect to W.

Theorem 9.

Let V be a finite-dimensional vector space and W a subspace of V. Then

dim $V/W = \dim V - \dim W$.

References

S. Kumaresan, "Linear Algebra – A Geometric Approach", Prentice-Hall of India, 2011 (pages mainly from 47 to 52).