Quotient Spaces

P. Sam Johnson

May 19, 2017

Overview

Definition 1.

Let W be a subspace of a vector space V over F. By a coset of W in V we mean a set of the form

$$
v+W:=\{v+w: w \in W\}
$$

for some $v \in V$.

We denote the set of cosets of W in V by V / W.

Example 2.

Let $V=\mathbb{R}^{2}$ and $W=\mathbb{R} e_{1}=\{(x, 0): x \in \mathbb{R}\}$. Take any $v=(a, b) \in \mathbb{R}^{2}$.
Then

$$
v+W=\{(c, b): c \in \mathbb{R}\}
$$

is the line through (a, b) parallel to the x-axis.
Figure page 48

Example 3.

Let $V=\mathbb{R}^{3}$ and $W=\{(x, y, 0): x, y \in \mathbb{R}\}$ be the $x y$-plane. Then the coset $v+W$ for any $v \in \mathbb{R}^{3}$ is the plane parallel to the $x y$-plane through the point $v=(a, b, c)$ at "height" c.

Exercise 4.

Let $W:=\left\{(x, y) \in \mathbb{R}^{2}: a x+y b=0\right\}$ for a fixed $(a, b) \in \mathbb{R}^{2} \backslash(0,0)$. Show that W is a one-dimensional subspace of $V=\mathbb{R}^{2}$ and that the cosets of W in V are the lines parallel to the line $a x+b y=0$ and hence are given by $a x+b y=c$ for $c \in \mathbb{R}$.

Lemma 5.

Let W be a subspace of a vector space over F. Let $v_{i}+W$ be cosets for $i=1,2$. Then exactly one of the following is true :
(a) $\left(v_{1}+W\right) \cap\left(v_{2}+W\right)=\emptyset$
(b) $v_{1}+W=v_{2}+W$.

Moreover, $v_{1}+W=v_{2}+W$ if and only if $v_{1}-v_{2} \in W$.

Definition 6.

Let $\xi \in V / W$ be a coset. If $\xi=v+W$, then v is called a representative of ξ.
If $\xi=v+W$ as well as $\xi=v+W$, then $u-v$ is an element of W. Any two representatives of a coset of W differ by an element of W. In particular, $x+W=W$ if and only if $x \in W$.

"Addition" of two cosets $\xi_{1}:=v_{i}+W$ in V / W

Let v_{i} be a representative of ξ_{i} for $i=1,2$. Then we defind $\xi_{1}+\xi_{2}$ to be the coset whose representative is $v_{1}+v_{2}$. That is,

$$
\xi_{1}+\xi_{2}=\left(v_{1}+v_{2}\right)+W
$$

We need to show that this coset $\xi_{1}+\xi_{2}$ is defined without any ambiguity. This is usually called "the well-definedness" of the concept.

Is "the sum of two cosets" well-defined?
Is the sum depending on representatives choosen on each coset ?
Suppose that there are two representatives v_{i} and u_{i} for $\xi_{1}, i=1,2$.
Then the sum $\xi_{1}+\xi_{2}$ is the coset $\left(v_{1}+v_{2}\right)+W$ and $\left(u_{1}+u_{2}\right)+W$.

"Addition" of two cosets $\xi_{1}:=v_{i}+W$ in V / W

Claim :

$$
\begin{equation*}
\left(v_{1}+v_{2}\right)+W=\left(u_{1}+u_{2}\right)+W \tag{1}
\end{equation*}
$$

The equation (1) holds iff $\left(v_{1}+v_{2}\right)+W=\left(u_{1}+u_{2}\right)+W$

$$
\text { iff } \quad\left(v_{1}-u_{1}\right)+\left(v_{2}-u_{2}\right) \in W
$$

But

$$
\left(v_{1}-u_{1}\right)+\left(v_{2}-u_{2}\right) \in W
$$

is true, since v_{i} and u_{i} are representatives of the same coset and hence

$$
u_{i}-v_{i} \in W
$$

Since W is a subspace $\left(v_{1}-u_{1}\right)+\left(v_{2}-u_{2}\right) \in W$.
Thus to defind the sumof two cosets we may use any two representatives.

"Scalar Multiplication" on V/W

If $\alpha \in F$ and $\xi=v+W \in V / W$, then $(\alpha \xi):=\alpha v+W$.

Example 7.

Show that the operation "scalar multiplication" is well-defined.

Dimension of Quotient Space

Theorem 8.

Let W be a subspace of V. Let V / W denote the set of cosets of V with respect to W. The following operations are well-defined :
(a) $\xi_{1}+\xi_{2}=\left(v_{1}+v_{2}\right)+W$, where $\xi_{i}:=v_{i}+W \in V / W$.
(b) $\alpha \xi=(\alpha v)+W$, where $\xi=v+W \in V / W$.
V / W is called the quotient space of V with respect to W.

Theorem 9.

Let V be a finite-dimensional vector space and W a subspace of V. Then

$$
\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W
$$

References

■ S. Kumaresan, "Linear Algebra - A Geometric Approach", Prentice-Hall of India, 2011 (pages mainly from 47 to 52).

